Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems

نویسندگان

  • Jane J. Ye
  • Daoli Zhu
  • Q. J. Zhu
چکیده

The generalized bilevel programming problem (GBLP) is a bilevel mathematical program where the lower level is a variational inequality. In this paper we prove that if the objective function of a GBLP is uniformly Lipschitz continuous in the lower level decision variable with respect to the upper level decision variable, then using certain uniform parametric error bounds as penalty functions gives single level problems equivalent to the GBLP. Several local and global uniform parametric error bounds are presented, and assumptions guaranteeing that they apply are discussed. We then derive Kuhn–Tucker-type necessary optimality conditions by using exact penalty formulations and nonsmooth analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Interior Point Technique for Solving Bilevel Programming Problems

This paper deals with bilevel programming programs with convex lower level problems. New necessary and sufficient optimality conditions that involve a single-level mathematical program satisfying the linear independence constraint qualification are introduced. These conditions are solved by an interior point technique for nonlinear programming. Neither the optimality conditions nor the algorith...

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

The KKT optimality conditions for constrained programming problem with generalized convex fuzzy mappings

The aim of present paper is to study a constrained programming with generalized $alpha-$univex fuzzy mappings. In this paper we introduce the concepts of $alpha-$univex, $alpha-$preunivex, pseudo $alpha-$univex and $alpha-$unicave fuzzy mappings, and we discover that $alpha-$univex fuzzy mappings are more general than univex fuzzy mappings. Then, we discuss the relationships of generalized $alp...

متن کامل

New optimality conditions for multiobjective fuzzy programming problems

In this paper we study fuzzy multiobjective optimization problems defined for $n$ variables.  Based on a new $p$-dimensional fuzzy stationary-point definition,  necessary  efficiency conditions are obtained.  And we prove that these conditions are also sufficient under new fuzzy generalized convexity notions. Furthermore, the results are obtained under general differentiability hypothesis.

متن کامل

Necessary Optimality Conditions in Pessimistic Bilevel Programming Necessary Optimality Conditions in Pessimistic Bilevel Programming

This paper is devoted to the so-called pessimistic version of bilevel programming programs. Minimization problems of this type are challenging to handle partly because the corresponding value functions are often merely upper (while not lower) semicontinuous. Employing advanced tools of variational analysis and generalized differentiation, we provide rather general frameworks ensuring the Lipsch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1997